3.4.27 \(\int \frac {1}{(a+b x^2)^{5/4} (c+d x^2)} \, dx\) [327]

3.4.27.1 Optimal result
3.4.27.2 Mathematica [C] (warning: unable to verify)
3.4.27.3 Rubi [A] (verified)
3.4.27.4 Maple [F]
3.4.27.5 Fricas [F(-1)]
3.4.27.6 Sympy [F]
3.4.27.7 Maxima [F]
3.4.27.8 Giac [F]
3.4.27.9 Mupad [F(-1)]

3.4.27.1 Optimal result

Integrand size = 21, antiderivative size = 233 \[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\frac {2 \sqrt {b} \sqrt [4]{1+\frac {b x^2}{a}} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} (b c-a d) \sqrt [4]{a+b x^2}}+\frac {\sqrt [4]{a} \sqrt {d} \sqrt {-\frac {b x^2}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}},\arcsin \left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right ),-1\right )}{(-b c+a d)^{3/2} x}-\frac {\sqrt [4]{a} \sqrt {d} \sqrt {-\frac {b x^2}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}},\arcsin \left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right ),-1\right )}{(-b c+a d)^{3/2} x} \]

output
2*(1+b*x^2/a)^(1/4)*(cos(1/2*arctan(x*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*a 
rctan(x*b^(1/2)/a^(1/2)))*EllipticE(sin(1/2*arctan(x*b^(1/2)/a^(1/2))),2^( 
1/2))*b^(1/2)/(-a*d+b*c)/(b*x^2+a)^(1/4)/a^(1/2)+a^(1/4)*EllipticPi((b*x^2 
+a)^(1/4)/a^(1/4),-a^(1/2)*d^(1/2)/(a*d-b*c)^(1/2),I)*d^(1/2)*(-b*x^2/a)^( 
1/2)/(a*d-b*c)^(3/2)/x-a^(1/4)*EllipticPi((b*x^2+a)^(1/4)/a^(1/4),a^(1/2)* 
d^(1/2)/(a*d-b*c)^(1/2),I)*d^(1/2)*(-b*x^2/a)^(1/2)/(a*d-b*c)^(3/2)/x
 
3.4.27.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.49 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.40 \[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\frac {x \left (\frac {b d x^2 \sqrt [4]{1+\frac {b x^2}{a}} \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{4},1,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )}{c}+\frac {6 \left (3 a c \left (a d-b \left (c+2 d x^2\right )\right ) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{4},1,\frac {3}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+b x^2 \left (c+d x^2\right ) \left (4 a d \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{4},2,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+b c \operatorname {AppellF1}\left (\frac {3}{2},\frac {5}{4},1,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )\right )\right )}{\left (c+d x^2\right ) \left (6 a c \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{4},1,\frac {3}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )-x^2 \left (4 a d \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{4},2,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+b c \operatorname {AppellF1}\left (\frac {3}{2},\frac {5}{4},1,\frac {5}{2},-\frac {b x^2}{a},-\frac {d x^2}{c}\right )\right )\right )}\right )}{3 a (-b c+a d) \sqrt [4]{a+b x^2}} \]

input
Integrate[1/((a + b*x^2)^(5/4)*(c + d*x^2)),x]
 
output
(x*((b*d*x^2*(1 + (b*x^2)/a)^(1/4)*AppellF1[3/2, 1/4, 1, 5/2, -((b*x^2)/a) 
, -((d*x^2)/c)])/c + (6*(3*a*c*(a*d - b*(c + 2*d*x^2))*AppellF1[1/2, 1/4, 
1, 3/2, -((b*x^2)/a), -((d*x^2)/c)] + b*x^2*(c + d*x^2)*(4*a*d*AppellF1[3/ 
2, 1/4, 2, 5/2, -((b*x^2)/a), -((d*x^2)/c)] + b*c*AppellF1[3/2, 5/4, 1, 5/ 
2, -((b*x^2)/a), -((d*x^2)/c)])))/((c + d*x^2)*(6*a*c*AppellF1[1/2, 1/4, 1 
, 3/2, -((b*x^2)/a), -((d*x^2)/c)] - x^2*(4*a*d*AppellF1[3/2, 1/4, 2, 5/2, 
 -((b*x^2)/a), -((d*x^2)/c)] + b*c*AppellF1[3/2, 5/4, 1, 5/2, -((b*x^2)/a) 
, -((d*x^2)/c)])))))/(3*a*(-(b*c) + a*d)*(a + b*x^2)^(1/4))
 
3.4.27.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {302, 213, 212, 310, 993, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx\)

\(\Big \downarrow \) 302

\(\displaystyle \frac {b \int \frac {1}{\left (b x^2+a\right )^{5/4}}dx}{b c-a d}-\frac {d \int \frac {1}{\sqrt [4]{b x^2+a} \left (d x^2+c\right )}dx}{b c-a d}\)

\(\Big \downarrow \) 213

\(\displaystyle \frac {b \sqrt [4]{\frac {b x^2}{a}+1} \int \frac {1}{\left (\frac {b x^2}{a}+1\right )^{5/4}}dx}{a \sqrt [4]{a+b x^2} (b c-a d)}-\frac {d \int \frac {1}{\sqrt [4]{b x^2+a} \left (d x^2+c\right )}dx}{b c-a d}\)

\(\Big \downarrow \) 212

\(\displaystyle \frac {2 \sqrt {b} \sqrt [4]{\frac {b x^2}{a}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \sqrt [4]{a+b x^2} (b c-a d)}-\frac {d \int \frac {1}{\sqrt [4]{b x^2+a} \left (d x^2+c\right )}dx}{b c-a d}\)

\(\Big \downarrow \) 310

\(\displaystyle \frac {2 \sqrt {b} \sqrt [4]{\frac {b x^2}{a}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \sqrt [4]{a+b x^2} (b c-a d)}-\frac {2 d \sqrt {-\frac {b x^2}{a}} \int \frac {\sqrt {b x^2+a}}{\sqrt {1-\frac {b x^2+a}{a}} \left (b c-a d+d \left (b x^2+a\right )\right )}d\sqrt [4]{b x^2+a}}{x (b c-a d)}\)

\(\Big \downarrow \) 993

\(\displaystyle \frac {2 \sqrt {b} \sqrt [4]{\frac {b x^2}{a}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \sqrt [4]{a+b x^2} (b c-a d)}-\frac {2 d \sqrt {-\frac {b x^2}{a}} \left (\frac {\int \frac {1}{\left (\sqrt {a d-b c}+\sqrt {d} \sqrt {b x^2+a}\right ) \sqrt {1-\frac {b x^2+a}{a}}}d\sqrt [4]{b x^2+a}}{2 \sqrt {d}}-\frac {\int \frac {1}{\left (\sqrt {a d-b c}-\sqrt {d} \sqrt {b x^2+a}\right ) \sqrt {1-\frac {b x^2+a}{a}}}d\sqrt [4]{b x^2+a}}{2 \sqrt {d}}\right )}{x (b c-a d)}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {2 \sqrt {b} \sqrt [4]{\frac {b x^2}{a}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \sqrt [4]{a+b x^2} (b c-a d)}-\frac {2 d \sqrt {-\frac {b x^2}{a}} \left (\frac {\sqrt [4]{a} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {a d-b c}},\arcsin \left (\frac {\sqrt [4]{b x^2+a}}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt {d} \sqrt {a d-b c}}-\frac {\sqrt [4]{a} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {a d-b c}},\arcsin \left (\frac {\sqrt [4]{b x^2+a}}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt {d} \sqrt {a d-b c}}\right )}{x (b c-a d)}\)

input
Int[1/((a + b*x^2)^(5/4)*(c + d*x^2)),x]
 
output
(2*Sqrt[b]*(1 + (b*x^2)/a)^(1/4)*EllipticE[ArcTan[(Sqrt[b]*x)/Sqrt[a]]/2, 
2])/(Sqrt[a]*(b*c - a*d)*(a + b*x^2)^(1/4)) - (2*d*Sqrt[-((b*x^2)/a)]*((a^ 
(1/4)*EllipticPi[-((Sqrt[a]*Sqrt[d])/Sqrt[-(b*c) + a*d]), ArcSin[(a + b*x^ 
2)^(1/4)/a^(1/4)], -1])/(2*Sqrt[d]*Sqrt[-(b*c) + a*d]) - (a^(1/4)*Elliptic 
Pi[(Sqrt[a]*Sqrt[d])/Sqrt[-(b*c) + a*d], ArcSin[(a + b*x^2)^(1/4)/a^(1/4)] 
, -1])/(2*Sqrt[d]*Sqrt[-(b*c) + a*d])))/((b*c - a*d)*x)
 

3.4.27.3.1 Defintions of rubi rules used

rule 212
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]) 
)*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 213
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(1 + b*(x^2/a))^(1/4)/( 
a*(a + b*x^2)^(1/4))   Int[1/(1 + b*(x^2/a))^(5/4), x], x] /; FreeQ[{a, b}, 
 x] && PosQ[a] && PosQ[b/a]
 

rule 302
Int[((a_) + (b_.)*(x_)^2)^(p_)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/( 
b*c - a*d)   Int[(a + b*x^2)^p, x], x] - Simp[d/(b*c - a*d)   Int[(a + b*x^ 
2)^(p + 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 
0] && LtQ[p, -1] && EqQ[Denominator[p], 4] && (EqQ[p, -5/4] || EqQ[p, -7/4] 
)
 

rule 310
Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Sim 
p[2*(Sqrt[(-b)*(x^2/a)]/x)   Subst[Int[x^2/(Sqrt[1 - x^4/a]*(b*c - a*d + d* 
x^4)), x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0]
 

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 
3.4.27.4 Maple [F]

\[\int \frac {1}{\left (b \,x^{2}+a \right )^{\frac {5}{4}} \left (d \,x^{2}+c \right )}d x\]

input
int(1/(b*x^2+a)^(5/4)/(d*x^2+c),x)
 
output
int(1/(b*x^2+a)^(5/4)/(d*x^2+c),x)
 
3.4.27.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/(b*x^2+a)^(5/4)/(d*x^2+c),x, algorithm="fricas")
 
output
Timed out
 
3.4.27.6 Sympy [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\int \frac {1}{\left (a + b x^{2}\right )^{\frac {5}{4}} \left (c + d x^{2}\right )}\, dx \]

input
integrate(1/(b*x**2+a)**(5/4)/(d*x**2+c),x)
 
output
Integral(1/((a + b*x**2)**(5/4)*(c + d*x**2)), x)
 
3.4.27.7 Maxima [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {5}{4}} {\left (d x^{2} + c\right )}} \,d x } \]

input
integrate(1/(b*x^2+a)^(5/4)/(d*x^2+c),x, algorithm="maxima")
 
output
integrate(1/((b*x^2 + a)^(5/4)*(d*x^2 + c)), x)
 
3.4.27.8 Giac [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {5}{4}} {\left (d x^{2} + c\right )}} \,d x } \]

input
integrate(1/(b*x^2+a)^(5/4)/(d*x^2+c),x, algorithm="giac")
 
output
integrate(1/((b*x^2 + a)^(5/4)*(d*x^2 + c)), x)
 
3.4.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^2\right )^{5/4} \left (c+d x^2\right )} \, dx=\int \frac {1}{{\left (b\,x^2+a\right )}^{5/4}\,\left (d\,x^2+c\right )} \,d x \]

input
int(1/((a + b*x^2)^(5/4)*(c + d*x^2)),x)
 
output
int(1/((a + b*x^2)^(5/4)*(c + d*x^2)), x)